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1 Introduction

Like investors in other retail financial markets, mutual fund investors face non-negligible search costs,

entry costs, and switching costs, and are likely to be financially constrained. While the role of market

frictions on investor choices has received some attention in the mutual fund literature, the implications

of frictions for the determination of mutual fund performance are still not well understood. In this

paper, we investigate how market frictions shape investors’ investment and disinvestment decisions and

the determination of mutual fund performance in equilibrium.

The starting point of our analysis is the model of Berk and Green (BG) (2004), who characterize the

competitive provision of capital to mutual funds. In their model, investors learn about managerial ability

from past returns and demand shares of all funds with expected risk-adjusted performance net of fees

and other costs higher than investors’ reservation return, which is assumed to be zero. In the presence

of diseconomies of scale, the flows of money into (out of) outperforming (underperforming) funds drive

their performance down (up) to zero. In equilibrium, all funds deliver zero net expected performance.

Therefore, fund performance is not predictable from fund characteristics or past performance.

BG’s influential work has changed the prevalent view on mutual fund performance persistence by

showing that lack of predictability in mutual fund performance is consistent with a market populated

by competing rational investors, even if fund managers possess skill. However, there exists abundant

empirical evidence that underperforming US equity funds continue to underperform in the long term

(e.g., Carhart, 1997). The model cannot explain, either, why performance persists for winners in the

short term (Bollen and Busse, 2005). Therefore, under the framework of BG, the well documented

persistence in mutual fund performance is an anomaly that needs to be explained.

One possible explanation for the discrepancy between the model’s implication of performance unpre-

dictability and the empirical evidence on performance persistence is that the assumption of diseconomies

of scale in asset management is not a good characterization of the mutual fund industry. However, the

available empirical evidence suggests that US equity fund performance decreases with size. Chen et al.

(2004) show that, conditional on other fund characteristics, performance decreases with lagged assets

under management, especially for funds investing in small-cap growth stocks, suggesting that liquidity is

a source of diseconomies of scale portfolio management. Yan et al. (2008) confirm these findings using

more direct measures of portfolio liquidity.

An alternative explanation is that market frictions such as search costs, switching costs, and liquidity

constraints, distort investor decisions and affect mutual fund equilibrium performance. Understanding the

effects of frictions on the determination of equilibrium in the mutual fund market is precisely the purpose

of our study. More specifically, we develop a model of performance determination that retains the key

features of the model of BG, namely diseconomies of scale and competition among investors, but extends
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it in several directions. First, we assume that investors’ reservation risk-adjusted returns are negative,

not zero, for many investors. The idea that mutual fund investors have negative reservation risk-adjusted

returns is indeed consistent with the abundant empirical evidence that the average actively managed

equity fund underperforms passive benchmarks after fees and trading costs. Negative reservation risk-

adjusted returns can arise as a consequence of search costs. For instance, BG assume that the investment

alternative to actively managed funds is an index fund. In the presence of search costs, the risk-adjusted

return of investing in the index fund net of search costs is negative. Consistently with this view, Hortaçsu

and Syverson (2004) attribute the large dispersion of fees across index mutual funds tracking the same

index to search costs. Since search costs are likely to vary across investors due to heterogeneity in financial

sophistication, in our model we assume that reservation returns are lower for unsophisticated investors.

Second, we assume that investors are financially constrained, i.e., they face a limit on the amount of

money they can invest in a mutual fund each period. Moreover, investors face the risk of suffering from

liquidity shocks, which would prevent them from investing in a mutual fund. We assume that this risk is

higher for unsophisticated investors.

Like in the model of BG, each period investors must choose between an actively managed fund and

an index fund, an alternative investment opportunity available to all investors with the same risk as

the managed portfolio. We assume that while the fund’s current investors can both reinvest their last

period’s wealth as well as their current endowment in the fund, new investors can only invest their current

period’s endowment.

Throughout our analysis we take the fund’s fee as given. Contractual fee changes are in practice

very difficult to change: Fee increases must be approved by both the Board of Directors and the fund’s

shareholders and decreases must be approved by the Board (Tufano and Sevick, 1997, Christoffersen,

2001). Our assumption of fee exogeneity is a simple way of capturing management companies’ limited

ability to set fees.

If investors were not financially constrained, any fund’s expected risk-adjusted net return would be

equal in equilibrium to the reservation return of the most unsophisticated investors among the fund’s

target investors. Otherwise, there would be excess demand by the most unsophisticated investors for

any fund with a higher level of performance. An increase in expected managerial ability would not lead

to an increase in the fund’s net performance, it would simply result in more flows from unsophisticated

investors. In this setup, a fund could only offer a higher expected net performance and attract more

sophisticated investors by becoming unavailable to the least sophisticated investors. However, when

there is a limit on the amount of money each investor can invest, inflows from the least sophisticated

investors do not drive fund performance down to their reservation return, so the fund can still attract

more sophisticated investors. In this different setup, more sophisticated investors decide to invest in the
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fund as long as the fund’s expected performance exceeds their reservation return. In equilibrium, any

actively managed fund offers an expected risk-adjusted net return at least as high as the reservation

return of the most sophisticated investor who decides to invest with the fund. When managerial ability

is low, a fund can survive offering a negative risk-adjusted expected net return if there are investors with

low enough reservation risk-adjusted returns among the fund’s target investors. As managerial ability

increases, the fund’s equilibrium expected performance increases and the fund attracts more sophisticated

investors. A fund can offer a positive expected risk-adjusted net return provided that investors’ inflows

are not sufficient to drive the fund’s performance down to zero. In sum, in our model both negative and

positive expected fund performance are possible in equilibrium.1 Moreover, expected fund performance

increases with managerial ability. To the extent that managerial ability is persistent through time, so is

realized fund performance.

Therefore, heterogeneity in investors’ reservation returns together with financial constraints can ra-

tionalize the evidence on fund performance persistence. But the model developed in this paper also

delivers a new empirical prediction that has not been tested before in the literature. In particular, the

model predicts that performance persistence increases with fund visibility. The intuition for this result

is as follows. When a mutual fund family’s offerings become more visible, the cost of obtaining infor-

mation about those funds decreases. This reduction in information costs has the effect of making the

funds available to investors who otherwise would not have been aware of their existence or would have

not collected information necessary to consider those funds for investment. Such investors are the least

sophisticated ones. Therefore, a fund with lower search costs will attract a higher fraction of unsophis-

ticated investors. If managerial ability is low, only a more visible fund, whose target investors are on

average less sophisticated, can operate. Moreover, other things equal, a more visible fund captures more

assets and, consequently, performs worse. Therefore, a more visible fund is more likely to operate with

poorer expected performance and, therefore, is more likely to exhibit persistent underperformance than

a less visible fund. On the other hand, the performance of a more visible fund improves faster with

managerial ability than that of an otherwise identical less visible fund. The reason is that a more visible

fund’s current investors are less sophisticated and have less money to invest, so their decision to enter

the fund as managerial ability improves is less harmful to fund performance. Moreover, current investors

require a lower expected risk-adjusted return in order to decide to reinvest with a more visible fund, so

it takes a lower level of managerial ability for all current investors to reinvest with the fund. Once all

current investors have decided to reinvest, new investors may enter the fund, but since new investors only

have their current endowment to invest, the effect of their entry on fund performance is limited. If we

1Note, however, that if positive managerial ability is scarce, positive expected performance, although compat-
ible with equilibrium, will be rarely observed in the data.
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further assume the existence of an entry cost to new investors, then increases in managerial ability lead

to an even faster rise in fund performance, as new investors invest in the fund only when its expected

performance outweights their reservation return plus the entry cost. In sum, other things equal, the

expected performance of a more visible fund is lower than that of a less visible fund, but rises faster with

managerial ability. In the paper, we show that there exists a range of managerial ability values for which

more visible funds exhibit a higher dispersion in expected performance than otherwise identical funds,

which implies that differences in realized performance should be more persistent among more visible

funds.

We use US mutual fund equity data from the 1996-2010 period to test the model’s prediction. We

proxy for fund visibility using the size, age and diversity of investment categories of the fund’s family. We

also use advertising expenditures at the family level to identify funds that target more or less sophisticated

investors. Measuring both past and future performance using the four-factor model of Carhart (1997),

we find strong evidence of performance persistence over a one-year period, conditional on observable fund

characteristics. However, consistently with the model’s prediction, the hardest-to-find funds exhibit sig-

nificantly less persistence in performance than the rest of funds. This is true for both underperformance

and outperformance. Funds whose past performance has been in the bottom decile of the distribution in

the last twelve months and which belong to the group of hard-to-find funds, do not perform significantly

worse than funds with median past performance and outperform the rest of recent losers. Similarly, the

performance of hard-to-find recent winners is not significantly better than that of the median fund and

is significantly worse than that of other recent winners. In sum, unlike for all the other funds, we find

little evidence of performance persistence for funds in the low-visibility group. When past performance

is measured using raw returns, we only find evidence of performance differences between the worst recent

performers and the median fund. Again, hard-to-find funds exhibit no evidence of performance persis-

tence. In sum, our empirical results lend support to the hypothesis that hard-to-find funds exhibit smaller

differences in equilibrium expected performance and, therefore, less persistent performance.

Results are somewhat different when we use advertising expenditures to proxy for fund visibility.

While funds with no advertising expenditure exhibit less performance persistence, this result is entirely

due to differences among outperforming funds, not underperforming funds.

Finally, we show evidence of differences in performance persistence between between institutional and

retail funds that are consistent with our model and with the idea that institutional funds are targeted to

more sophisticated investors.

The results of this paper have important consequences for investors, managers and regulators. The

analysis suggests that frictions can generate persistent differences in fund performance despite competition

among rational investors. Moreover, we show that fund visibility exacerbates persistence, so investors
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should avoid not just underperforming funds but especially the more visible underperforming funds. For

management companies, it is important to know that visibility helps funds attract more assets, but may

also increase the fraction of unsophisticated investors in the fund, which has consequences not just for

flows but also for fund performance. Finally, the results of the paper suggest that reducing the information

costs of complex financial products such as actively managed funds should be accompanied by policies

aimed at facilitating comparisons with investment alternatives, such as indexed funds.

The effect of market frictions in general, and search costs in particular, on investor decisions has been

previously investigated by the mutual fund literature in the context of studies of mutual fund flows. Sirri

and Tufano (1998) are the first to show that search costs affect investor decisions. In particular, they find

that the flow-performance relation is less steep for funds associated with higher search costs. Huang et al.

(2007) propose a model in which search costs combined with Bayesian learning from past returns lead

investors to consider only funds with the highest recent performance since the costs of researching a new

fund with less than top recent performance outweight the expected benefits. More recently, Navone (2012)

shows that the sensitivity of flows to past performance decreases with past performance but increases

with different proxies for fund visibility.

Our paper belongs to a relatively new line of research that investigates the determinants of mutual

fund performance persistence in light of Berk and Green’s (2004) theory. This line of research includes

the studies of Ferreira et al. (2010), Bessler et al. (2010), Reuter and Zitzewitz (2010), and Elton

et al. (2011). Ferreira et al. (2010) study differences in performance persistence across countries and

find that such differences are associated with differences in the degree of diseconomies of scale and

fund competition. Bessler et al. (2010) show that outflows from underperforming funds alone cannot

eliminate their performance disadvantage. They do find, however, that outflows from underperforming

funds combined with manager replacement can cause reversals in performance. Reuter and Zitzewitz

(2010) study the effect of fund flows on performance using a regression discontinuity approach and

estimate diseconomies of scale of a magnitude larger than estimated in standard regression but insufficient

to eliminate performance persistence. Elton et al. (2011) argue that if there are diseconomies of scale in

asset management, then performance should be less persistent among larger funds for which diseconomies

of scale are more likely to be important. However, when they divide a sample of equity mutual funds

into groups according to assets under management, they find that the degree of performance persistence

is similar across all size groups.2

Our paper is more closely related to that of Berk and Tonks (2007), who investigate cross-sectional

differences in performance persistence for US equity funds. The authors argue that differences in the speed

2Elton et al. (2011) also regress performance on past performance, fund size, lagged flows, and other fund
characteristics. While they find that lagged flows and size are associated with lower future performance, this
association is much weaker than that of past performance with future performance.
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of learning across investors cause the composition of a fund’s investor base to change with performance,

since the first investors to leave or enter a fund are those who update their beliefs the fastest. As

a consequence, remaining investors of a fund that has underperformed in the past have a lower flow-

to-performance sensitivity, which prevents the fund’s assets from shrinking should the fund continue

to underperform in the future. Our paper is also related to the work of Glode et al. (2011). These

authors study time variation in performance persistence and find evidence that mutual fund performance

persistence is strongest following periods of high market returns and vanishes after periods of low market

returns. The authors argue that differences in performance persistence across market conditions may

be explained by time-varying differences in the participation of unsophisticated investors in the mutual

fund market, with a higher fraction of unsophisticated investors leading to larger deviation from the

no-predictability equilibrium. Consistently with this hypothesis, the authors report that time-variation

in predictability is concentrated among funds catering to retail investors.

Like Berk and Tonks (2007) and Glode et al. (2011), we also attribute differences in performance

persistence to investor heterogeneity in their degree of financial sophistication. However, while these

authors hypothesize that observed performance persistence is a consequence of investors’ failure to respond

optimally to differences in expected performance, we show that performance persistence can arise as a

consequence of frictions. Of course, in reality performance persistence may be the result of many forces

at play. Therefore, we view the theoretical and empirical results of our paper as complementary to those

of Berk and Tonks (2007) and Glode et al. (2011).

The rest of the paper is organized as follows. In section 2, we present the theoretical framework of

our analysis. In section 3, we describe the data set. In section 4 we present our empirical strategy and

the empirical results. Section 5 concludes. The Appendix contains all the proofs.

2 The model

BG consider a fund that can generate returns in excess of a passive benchmark due to its manager’s ability.

Let Rt denote the fund’s return in excess of a passive benchmark before fees and expenses, Rt = α+ εt,

where α reflects managerial ability and εt is an idiosyncratic shock that is normally distributed with

mean 0 and variance σ2. Managerial ability, α, is not known to managers or investors, who estimate it

using the information contained in past returns. Henceforth, we refer to the fund’s risk-adjusted return

as the fund’s return.

The cost of managing the portfolio is denoted by C(q), where q, is the dollar value of assets under

management. C(q) is common knowledge and it satisfies the following properties: C(0) = 0, lim
q→∞

C ′(q) =

∞ and for all q ≥ 0, C(q) ≥ 0, C ′(q) > 0, C ′′(q) > 0. The last assumption, increasing marginal costs,

captures diseconomies in scale in asset trading and is key to the model’s implications.
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Similarly to BG we model a fund that began operating at time 0 and study the investors’ decisions

at time t. Since we do not study fund dynamics, our model analyzes a single-period’s decision.3 The

fund’s net return at time t is defined as rt ≡ Rt − C (qt)

qt
− f , where qt is the t− 1 investment in the fund

and f is the fund’s fee, which is exogenously given. If the revenues collected by the manager at time t,

fqt, cover the fixed costs of the fund, the fund continues its activity, otherwise the fund closes down. We

assume without loss of generality that fixed costs are zero.

We depart from BG in that the fund’s potential investors have limited funds to invest and exhibit

different degrees of financial sophistication. To model different degrees of sophistication we allow for

reservation returns to vary across investors. Like BG, we assume that each investor i has a specific

search cost γi that reflects her ability to find an alternative fund. For simplicity, we assume that the

alternative for all investors is an index fund with zero expected risk-adjusted return. Net of search costs,

the reservation expected risk-adjusted return (henceforth reservation return) of the i− th investor is −γi.

Therefore, unlike in the model of BG, the investor’s reservation return is different from zero and is also

different across investors. We assume that there is a continuum of investors in the economy with absolute

value of the reservation return γ uniformly distributed over the interval
[
0, γSup

]
, with γSup ≤ 1.4

The fund has a limited pool of potential investors: all current investors plus investors with higher

reservation returns than those of current investors, so the fund’s target investors at t have reservation

returns in absolute value uniformly distributed over the interval [0, γMAX ]. Fund visibility is determined

by γMAX . If the fund is more visible, it is available to more unsophisticated investors, so the search costs

of the fund’s least sophisticated potential investors are higher. We also allow for the possibility that new

investors who enter the fund at date t must pay an entry cost K.

The timing of the events is the following:

Date t− 1:

• Investors enter the fund. We denote by γ the absolute value of the reservation return of the most

sophisticated investor who enters the fund, and by γMAX the fund’s least sophisticated investor’s

reservation return in absolute value.

Date t:

• The fund’s return at date t is realized and current investors obtain its net return.

• After observing the return at date t, the fund’s current investors decide whether to reinvest with

the fund or withdraw their current investment.

3Note that modeling only the decision of investors at time t does not imply that the investors are myopic given
the model’s assumption that investors maximize the expected risk-adjusted return on their investment.

4Therefore, we assume that all investors in the economy have negative reservation returns net of search costs.
Alternatively we could allow some investors to have positive reservation returns without altering the conclusions.
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• New investors decide whether they want to invest with the fund.

• We assume that each current investor holds an investment in the fund that is worth m dollars

at t. Also, each investor is endowed with a wealth of m dollars at date t. However, investor i

is exposed at time t to the possibility of a liquidity shock with probability γi. Consequently, the

expected investment at t by investor i is m (1− γi) . This assumption captures the idea that less

sophisticated investors face more severe financial constraints (on average).

Date t+ 1:

• The fund’s return at date t+ 1 is realized and the fund’s investors obtain its net return.

We study equilibrium at t.

Upon observing the series of net returns and total assets under management from 1 to t, {rs, qs}s=t
s=1 ,

investors can infer the series of returns {Rs}s=t
s=1 and update their beliefs about the fund manager’s ability

through Bayesian updating:

φt+1 = E (Rt+1 |R1, ..., Rt ) .

Investor i demands shares of the fund if the fund’s expected net return (the fund’s performance)

exceeds her reservation return −γi. The fund’s expected net return in period t equals

TPt+1 (qt+1) = E [rt+1|R1, ..., Rt]

= E

[
Rt+1 − C (qt+1)

qt+1
− f

∣∣∣∣R1, ..., Rt

]
.

A current investor will either withdraw her date t− 1 investment from the fund or keep her current

investment and invest her date t endowment in the fund depending on whether the fund’s expected net

return at date t is below or above her reservation return.

An equilibrium at t is an amount of assets under management, q∗t+1, such that investors maximize

their expected risk-adjusted return. In an equilibrium in which only current investors enter the fund, the

following conditions must hold:

• The fund’s expected performance is given by TPt+1

(
q∗t+1

)
= φt+1 −

C
(
q∗t+1

)

q∗t+1

− f .

• All investors who withdraw their money from the fund have reservation returns higher than

TPt+1

(
q∗t+1

)
.

• All investors who invest new money in the fund have reservation returns less than or equal to

TPt+1

(
q∗t+1

)
.
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• The equilibrium amount of assets q∗t+1 is such that 0 ≤ q∗t+1 ≤ vt+M, where vt ≡ m (γMAX − γ) is

the value at t of current investors’ investment at t−1 and M denotes the maximum inflow possible

in this period: m
(
γMAX − 1

2γ
2
MAX

)
.

To find the cutoff reservation return, −γC , such that all current investors with reservation returns

lower than −γC reinvest with the fund and all current investors with reservation returns higher than

−γC leave the fund, we solve the system:

TPt+1

(
qCt+1

)
= −γC ,

qCt+1 = 2m
(
γMAX − γC

)− m

2
(γ2

MAX − (γC)2).

Depending on the value of the solution γC , there are three possible alternatives:

Case 1: γMAX ≤ γC . Even if all current investors left the fund, so qt+1 = 0 and C(qt+1) = 0, the

fund’s expected net return would be lower than the reservation return of the fund’s most unsophisticated

target investor. Therefore, the fund must close down and q∗t+1 = 0.

Case 2: γ ≤ γC < γMAX . Current investors with reservation returns higher than −γC exit the fund

and those with reservation returns lower than −γC reinvest with the fund. The fund’s expected net

return equals E (rt+1) = −γC < 0 and the fund’s assets q∗t+1 = qCt+1.

Case 3: γC < γ. Even if all current investors reinvested with the fund, the fund’s expected net return

would be higher than the reservation return of the fund’s most sophisticated target investor, so some

new, more sophisticated investors might want to enter the fund. Therefore, q∗t+1 ≥ 2m (γMAX − γ) −
m
2 (γ

2
MAX − γ2). In this case, we are interested in knowing whether new investors would pay the cost K

to enter the fund.

In an equilibrium in which new investors enter the fund the following conditions must hold:

• The fund’s expected return equals TPt+1

(
q∗t+1

)
.

• New investors who invest in the fund have reservation returns less than or equal to TPt+1

(
q∗t+1

)−
K.

• New investors who decide not to invest in the fund have reservation returns higher than TPt+1

(
q∗t+1

)−
K.

To find the cutoff reservation return, −γN , such that all current investors reinvest with the fund, new

investors with reservation returns lower than −γN enter the fund, and new investors with reservation
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returns higher than −γN do not invest with the fund, we solve the system:

TPt+1

(
qNt+1

)−K = −γN ,

qNt+1 = vt +m

(
(γMAX − γN )− 1

2
(γ2

MAX − (
γN

)2
)

)
.

We now distinguish two cases depending on whether the solution γN is higher or smaller than γ.

When γN ≥ γ, no new investors want to enter the fund. Even if only current investors reinvested

with the fund, the fund’s performance would not be enough to convince investors to pay the entry cost.

As a result, only current investors invest in the fund and the amount invested in the fund at t + 1 is

q∗t+1 = 2vt − m
2 (γ

2
MAX − γ2) ≡ qt+1. The expected return in this case is E (rt+1) = TPt+1

(
qt+1

)
.

On the other hand, when γN < γ, new investors enter the fund. The last investor i to en-

ter the fund in the period t will have γi = γN , and the quantity invested in the fund is q∗t+1 =

vt + m
(
(γMAX − γN )− 1

2 (γ
2
MAX − (

γN
)2
)
)
. If γN < 0, then all potential investors enter the fund

and the quantity invested in the fund is q∗t+1 = vt +mγMAX

(
1− γMAX

2

)
= vt +M. Consequently, the

fund’s expected net return is E (rt+1) = K − γN , if γ > γN > 0 and E (rt+1) = TPt+1 (vt +M) , if

γN ≤ 0.

Henceforth, we assume for simplicity that C (q) = cq2.

Proposition 1 The expected net return of a fund that targets investors in the interval [0, γMAX ] equals

E (rt+1 (φt+1)) =





−γC , if Φ1 ≤ φt+1 < Φ2

TPt+1

(
qt+1

)
, if Φ2 ≤ φt+1 < Φ2 +K

K − γN , if Φ2 +K ≤ φt+1 < Φ3 +K

TPt+1 (vt +M) , if Φ3 +K ≤ φt+1,

where Φj , j = 1, 3 are defined in the Appendix and γC , γN , equal:

γC =
1

cm

(
1 + 2cm−A1/2

)
, where

A ≡ 1 + 2cm (2 + φ− f) + c2m2 (2− γMAX)
2

and

γN =
1

cm

(
1 + cm−B1/2

)
, where

B ≡ 1 + 2cm (1 + φ− f −K) + c2m2

(
(1− γMAX)

2 − 2

m
vt

)
,
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respectively.

φt+1

E
(r

t+
1)

0

Figure 1: Expected net return as a function of expected managerial skill. Parameter values: m = 200,
c = 0.01, K = 0, γMAX = 0.7, f = 0.01.

Figure 1 shows graphically the fund’s expected net return as a function of expected managerial ability

holding the fund’s fee constant and assuming that there are no entry costs for new investors (K = 0). If

managerial ability is too low, the fund must close down. As managerial ability increases, the fund starts

to operate with the most unsophisticated investors of all its potential investors. Investors’ limited capital

allows fund performance to increase with managerial ability. If managerial ability is high enough, all

current investors reinvest with the fund and new more sophisticated investors start to invest. Because

new investors invest only their current endowment, the fund’s assets increase less rapidly with increases

in managerial ability, so the fund’s expected return increases faster. Once all potential investors are in

the fund, fund performance increases one-to-one with managerial skill.

Proposition 1 shows that the fund’s expected net return in equilibrium can be different from zero.

On the one hand, equilibrium expected net returns may be negative in our setup when investors prefer to

keep their investment in the fund despite earning a negative return because this return is still higher than

their reservation return. On the other hand, positive equilibrium expected net returns can be obtained

when managerial ability increases and either entry costs prevent new investors from entering the fund

and eroding funds’ performance or all potential investors have invested with the fund. Therefore, the

interaction of financial constraints and negative reservation returns prevents investors’ money flowing

freely into and out of the fund and eliminating differential performance. Note that in order to observe
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dispersion in expected performance in the data, other than that induced by visibility or differences in

γMAX or γ, we need to have dispersion in managerial ability. To the extent that managerial ability

persists through time for a given manager, observed differences in fund performance across mutual funds

are also persistent.

Note also that the result of Proposition 1, i.e., the fund’s expected net return in equilibrium can

be different from zero, is not driven by the entry cost K or negative reservation returns. The result

is still valid if these two assumptions are relaxed. The necessary conditions to obtain expected net

returns different form zero are: heterogeneity of investors’ reservation returns and limited capital to

invest. Investor heterogeneity ensures that in equilibrium we have expected returns different from zero,

but also different for different levels of managerial ability. The assumption that investors are financially

constrained, prevents them from having a risk-adjusted expected net return equal to the reservation

return of the most unsophisticated investor among the fund’s target investors. If the investors were not

constrained, there would be excess demand by the most unsophisticated investors for any fund with a

higher level of performance. Therefore, an increase in managerial ability would not lead to an increase

in the fund’s net performance, it would simply attract more flows from unsophisticated investors.

As we can see from Proposition 1, expected net return of a given fund depends on the fund’s target

of investors, given by γMAX . Notice that both γCand γN increase with γMAX and this is due to the fact

that when the target investors are more sophisticated, there is a larger amount available for reinvestment

in the fund, and therefore, the fund performance is eroded to a larger extent by money inflows. As a

result, if the fund is less visible it may earn a higher expected net return in equilibrium. However, this

does not guarantee that reducing fund visibility always increases expected performance. To see this, let

us consider the same fund and two different cases, each one corresponding to a different value of γMAX .

Henceforth, we refer to the first case as the high visibility fund,
(
γHigh
MAX

)
, and to the second case as the

low visibility fund,
(
γLow
MAX

)
, with γHigh

MAX > γLow
MAX . We assume that the total amount currently invested

in both cases is the same, vt. We denote by ΦHigh
j ,ΦLow

j the cut-off points for the high and low visibility

cases, respectively.

Proposition 2 There exist K1 and K2 as defined in the Appendix such that:

1. If K < K1, then ELow (rt+1 (φt+1)) > EHigh (rt+1 (φt+1)) , for any φt+1.

2. If K ∈ [K1,K2] then there exist φ1 ∈
(
ΦHigh

2 ,ΦHigh
2 +K

)
and φ2 ∈ (

ΦLow
2 ,ΦLow

2 +K
)
, φ2 >

ΦHigh
2 +K such that ELow (rt+1 (φj)) = EHigh (rt+1 (φj)) , j = 1, 2. Then, for any φt+1 < φ1 and φt+1 >

φ2, we have that ELow (rt+1 (φt+1)) > EHigh (rt+1 (φt+1)) and for φt+1 ∈ (φ1, φ2) , E
Low (rt+1 (φt+1)) >

EHigh (rt+1 (φt+1)) .

3. If K > K2, then there exists φ1 ∈
(
ΦHigh

2 ,ΦHigh
2 +K

)
such that ELow (rt+1 (φ1)) = EHigh (rt+1 (φ1)) .

Then, for any φt+1 < φ1, E
Low (rt+1 (φt+1)) > EHigh (rt+1 (φt+1)) and for φt+1 > φ1, E

Low (rt+1 (φt+1)) <
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Figure 2: Expected net return as a function of expected managerial skill and fund visibility, no entry

costs. The solid (dotted) line corresponds to a low (high) level of visibility, i.e., low (high) γMAX .

Parameter values: m = 200, c = 0.01, K = 0, γHigh
MAX = 1, γLow

MAX = 0.5.

EHigh (rt+1 (φt+1)) .

Proposition 2 characterizes the conditions under which a high visibility fund underperforms an other-

wise identical low visibility fund. When entry costs are small, K < K1 (see Figure 2 for the case K = 0), a

more visible fund underperforms an otherwise identical less visible fund for any level of managerial ability.

For any given of managerial ability a fund that is visible to the least sophisticated investors captures more

investors, which reduces its performance. As can be seen in Figure 2, the performance gap between funds

targeted to sophisticated investors and funds targeted to unsophisticated investors narrows as managerial

ability increases. This is because it takes a low level of managerial ability for all current investors of the

latter to decide to reinvest with the fund: They have lower reservation returns and, because they have

less money to invest (on average), their decision to reinvest is not as harmful for fund performance. Once

all current investors have decided to reinvest, new investors enter the fund but entry of new investors

has a less detrimental effect on fund performance than reinvestment by current investors. Therefore, for

low entry costs, differences in expected performance between both funds are more apparent in the lower

end of managerial ability. Figure 2 suggests that, holding the distribution of managerial ability constant,

there will be more cross-sectional dispersion in fund performance as fund visibility increases. Therefore,

differences in fund performance observed in the data should be more persistent among more visible funds.

Figure 3 shows the expected performance of both types of funds when K ∈ [K1,K2]. In this case,
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Figure 3: Expected net return as a function of expected managerial skill and fund visibility, positive
entry cost. The solid (dotted) line corresponds to a low (high) level of visibility, i.e., low (high) γMAX .

Parameter values: m = 200, c = 0.01, K = 0.7, γHigh
MAX = 1, γLow

MAX = 0.5, f = 0.01.

there exists an interval, (φ1, φ2) in which the more visible fund outperforms the less visible fund. When

all current investors have decided to reinvest in the more visible fund, no new investors are willing to

enter the fund as long as its expected performance does not exceed the reservation return of the least

sophisticated new investor plus the entry cost. In that interval, the fund’s expected performance increases

one-to-one with managerial ability. The less visible fund, however, continues to retain its current investors’

money and attract their t−date endowment, so its expected performance increases slowly with ability.

The lower bound of the entry cost interval, K1, guarantees that the expected performance of both types

funds cross in the interval
(
ΦHigh

2 ,ΦHigh
2 +K

)
. Existence of the intersection is guaranteed by the fact

that unsophisticated investors have less money to invest, which gives more visible funds a performance

advantage over less visible funds when current investors have reinvested with both funds and no new

investors wish to enter. For higher levels of ability, new investors start to enter the fund. Since new

investors in the more visible fund enter for lower levels of ability (because they are not so sophisticated),

its expected performance deteriorates sooner as ability improves. In the limit, all possible investors decide

to invest. Since the more visible fund attracts a larger set of investors, it is larger and must necessarily

underperform.

Finally, when entry costs are very high, i.e., when K > K2, there will be no new investors willing

to enter the fund for the range of managerial ability considered. In this case, the more visible fund

outperforms the less visible fund for levels of expected managerial ability that are above a minimum
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level, φ1.

Our model suggests that both negative and positive expected performance are possible in equilibrium

in a market with frictions. It also predicts that expected fund performance increases with managerial abil-

ity, which explains the evidence that cross-sectional differences in observed performance persist through

time. The model also delivers a new prediction: Fund visibility increases cross-sectional dispersion in

fund performance, and therefore it increases realized performance persistence. This is a testable empirical

prediction and is the basis of the empirical part of the paper.

3 Data

Our main source of data is the CRSP Survivor-Bias-Free US Mutual Fund Database. Since some of

the variables employed in the analysis are available only since the early 1990s, we restrict our attention

to the 1993-2010 period. We exclude index, non-domestic, non-diversified, and non-equity funds.5 We

aggregate monthly data for different share classes at the fund level. In particular, we compute fund total

net assets as the sum of assets of all share classes of the same portfolio, fund age as the number of years

since inception of the oldest class, and all other variables (return, expense ratio, 12b-1 fee, front-end and

back-end loads) as asset-weighted averages of those variables at the class level. We also compute family

age and family assets as the age of the oldest fund in the family and the sum of assets of all funds in the

family, respectively. Funds and families are identified using CRSP’s crsp portno and mgmt cd variables,

respectively. When those variables are not available, we use fund name and management company name,

instead. To mitigate the effect of documented biases in the CRSP database, we exclude all fund-month

observations with total net assets below $15 million and age less than three years (Elton et al., 2011;

Evans, 2010). We winsorize fee and return data at 1% of each tail each month.

Throughout the paper, we evaluate mutual fund performance using Carhart’s (1997) four-factor

model:

rit = αi + βrm,irmt + βsmb,ismbt + βhml,ihmlt + βpr1y,ipr1yt + εit, (1)

where rit is fund i’s return in month t in excess of the 30-day risk-free interest rate, as proxied by

Ibbotson’s one-month Treasury bill rate, and rmt, smbt and hmlt denote the return on portfolios that

proxy for the market, size, and book-to-market risk factors, respectively. The term pr1yt is the return

5To identify US domestic equity funds, we use the information in CRSP on investment category as follows. For
years in which the only objective code available is Wiesenberger’s (wbrger obj cd), we consider as US domestic
equity those funds with the codes: G; G-I; I-G; MCG; GCI; LTG; MCG; SCG; and IEQ. For years 1993-1999, we
use the si obj cd codes: AGG; GMC; GRI; GRO; ING; SCG. For years 2000-2010, we use the lipper class name
codes: LCVE; MLVE; EI; EIEI; LCCE; MLCE; LCGE; MLGE; MCVE; MCCE; MCGE; SCVE; SCCE; and
SCGE. Index funds are identified by the CRSP’s index fund flag variable when available and by portfolio name
otherwise.
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difference between stocks with high and low returns in the previous year and is included to account for

passive momentum strategies. We obtain the time series of interest rates, the Fama-French factors and

momentum from Kenneth French’s website.

To estimate fund i’s risk-adjusted performance in month t, we first regress the fund’s excess return

on the three Fama-French factors and momentum over the previous three years. If less than 36 monthly

observations of previous data are available, we require at least 30 observations. We then compute an

estimate of fund i’s alpha in month t, α̂it, as the difference between the fund’s excess return in month t

and the dot product of the vectors of estimated betas and factor realizations in that month.

We are interested in testing whether past performance predicts future performance over multi-period

horizons. To compute risk-adjusted performance over the prior k months in month t, which we denote

by α̂i,t−k:t−1, we sum monthly estimated alphas from months t− k to month t− 1. Future performance,

denoted by α̂i,t:t+m, is computed as the sum of monthly alphas from months t to month t+m. Throughout

the paper, we will focus on annual performance, so we set k = 12 and m = 11.

We compute flows of money to mutual funds from monthly data on assets under management and

returns. In particular, monthly dollar flows in month t are computed as TNAt − TNAt−1(1+ rt), where

TNA and r denote the fund’s total net assets and net return, respectively. Once we have computed

monthly dollar flows, we compute annual flows by adding dollar flows over the year. In our regressions,

we use annual relative flows defined as total annual flows divided by total net assets at the end of the

previous year.

The final dataset contains information on an average number of 1,251 funds and 327 fund families per

month. Panels A and B of Table I contain summary statistics of fund characteristics and performance

for the 1993-2000 and 2001-2010 sample periods, respectively.

We use the following proxies for fund visibility:

1. Number of different investment categories in which the family offers mutual funds;

2. Family size, as proxied by the natural logarithm of total family assets;

3. Family age, computed as the age of the oldest fund in the family.

These variables have been previously proposed by Huang et al. (2007) as proxies for investor partic-

ipation costs. Low values of these variables characterize less visible and, therefore, hard-to-find funds.

We assume that, because of the higher cost of locating these funds, potential investors include only those

who enjoy low search costs due to their higher level of education, financial literacy, intelligence, or access

to unbiased advice. We decide to focus on family-level variables for two reasons. First, strategic decisions

such as distribution and advertising are taken at the fund family level. As pointed out by Gallaher et al.

(2006), “decisions such as advertising budget, what and when to advertise, the types and number of funds
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to offer, which distribution channels to pursue, service quality, or individual manager appointments pri-

marily originate on the mutual fund family level.” Second, evidence on spillover effects within families

(Nanda et al., 2004) suggests that funds in the same family may share the same set of potential investors.

For each one of these proxies, we create two dummy variables, denoted by LO and HI, which equal

one if fund i belongs to the bottom and top quartiles of the variable’s distribution in data the month

prior to the evaluation period, respectively.

While sophisticated investors use reliable sources of information, such as analysts’ recommendations

or their own research, to assess mutual fund performance, it is plausible to think that unsophisticated

investors rely more on advertising. Therefore, in addition to the three variables on fund visibility described

above, we also use advertising as a proxy for the degree of sophistication of a fund’s target investors.

More specifically, we obtain data on advertising expenditures at the family level from Kantar Media,

which tracks advertising activity in a large variety of media including magazines, newspapers, television,

internet, and radio. We are able to collect information on family advertising for about 18% of all

fund-month observations in the 1995-2009 period. For each family and month, we compute the average

advertising expenditure over the previous 12 months. For this variable, we define the HI subsample as

that containing funds the top quartile of the month’s distribution. It should be noted, however, that

this subsample only has 822 fund-month observations, so results for this subsample should be taken with

caution. We set LO equal to one if the fund’s family is not contained in the advertising database for that

month.

Table 2 compares funds in the LO and HI subsamples on the basis of selected fund characteristics.

Less visible funds according to the number of investment categories, family size and family age, are

substantially smaller; they charge lower front-end loads, 12b-1 fees, and back-end loads, but higher man-

agement fees; and they exhibit better risk-adjusted performance although the difference in performance

is not statistically significant. Overall, these characteristics can be regarded as consistent with the idea

that funds in less visible families are associated with lower marketing fees and have a more restricted

investor base. When we use family advertising to proxy for fund visibility, we still find that funds in the

LO subsample are smaller and charge higher management fees. However, these funds also charge higher

back-end loads and exhibit worse performance.

4 Empirical strategy and results

4.1 Methodology

To estimate persistence in mutual fund performance, the literature has employed two main alternative

methodologies. The more traditional approach consists of sorting funds at the beginning of each evaluation
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period on the basis of their past performance. Funds are then grouped in quantile portfolios and portfolio

returns are computed over the evaluation period. Finally, risk-adjusted performance is measured using the

time series of portfolio returns. Failure to find differences in risk-adjusted performance across portfolios

is interpreted as lack of persistence in mutual fund performance. This approach has been employed to

study performance persistence by Hendricks et al. (1993), Gruber (1996) and Carhart (1997), and Elton

et al. (2011), among others. The portfolio-based approach serves two purposes: It tests for persistence

in performance and it quantifies the value of investing on the basis of past performance. However, the

approach suffers from the same problem as all nonparametric methods, i.e., it requires a large amount

of data in multivariate settings. Suppose we wished to test for performance persistence while controlling

for the effect of fund size on future performance. We could sort funds on both past performance and

size, allocate funds to the resulting performance-size bins, and then compare portfolios that are neutral

to size but correspond to different quantiles of past performance. Also, if our goal were to test whether

performance persistence changes with size, we could compare portfolios across both past performance and

size bins. In both cases, the number of bins grows geometrically with the number of fund characteristics

whose effect on performance we wish to measure.

As an alternative, the regression-based approach consists of regressing future performance on past

performance and then testing whether the regression coefficient is zero. This approach has been used by

Busse et al. (2010), Elton et al. (2011) and Ferreira et al. (2010). By imposing a parametric specification

on the functional relation between future performance and past performance and other variables, we can

control for the effect of fund characteristics on performance and allow for persistence to vary with those

characteristics with less stringent data requirements.

Because we are interested in testing whether the degree of performance persistence changes with fund

visibility while controlling for a number of other variables, we choose the regression approach. We start

by regressing future performance on past performance. Then, we allow for possible non-linearities and

regress future performance on dummy variables corresponding to different deciles of past performance.

4.2 Fund visibility and performance persistence

To evaluate the prevalence of performance persistence in the entire sample, we estimate by pooled OLS

the regression equation:

α̂i,t:t+11 = δ0,t + δ1α̂i,t−12:t−1 +∆X ′
i,t−1 + ξi,t:t+11, (2)

where each observation corresponds to one fund-month pair, X is a row vector of control variables, and ε

denotes a generic error term. Control variables include: fund size in month t− 1, defined as the natural
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logarithm of the fund’s assets; relative flows of money into the fund during the year ending in month

t− 1; fund age, defined as the natural logarithm of the fund’s age in months; family size in month t− 1,

defined as the natural logarithm of the assets under management of the management company to which

the fund belongs; and family age, defined as the natural logarithm of the management company’s age in

months. We also control for the fund’s maximum front-end load, maximum back-end load, expense-ratio,

and turnover ratio. Since values of fees and turnover are reported for the entire fiscal year, their value

in month t − 1 is not strictly lagged with respect to future performance unless month t − 1 is the last

month of the fiscal year. To ensure that those variables are known before month t, we use a lag of 12

months for them. We include monthly dummies in the regression and compute standard errors clustered

by both fund and month to correct for serial and cross-sectional correlation of residuals, respectively.

The first column in Table 3 reports estimation results for equation (2). The coefficient on past

performance is positive and statistically significant at the 1% confidence level, which suggests that past

performance persists for periods of at least one year, consistently with previous studies. Both fund

size and lagged flows are negatively and significantly associated with performance, consistent with BG’s

diseconomies of scale hypothesis. Funds belonging to larger management companies are associated with

better performance, as documented by Chen et al. (2004). Finally, the fund’s back-end load, expense

ratio and turnover ratio are negatively related to performance, although the coefficient for turnover ratio

is only marginally statistically significant. In sum, these results are consistent with a large body of

empirical evidence that future US equity fund performance is predictable from the cross-section of past

performance and other fund characteristics.

We then interact the dummy variables LO and HI obtained according to the four proxies of fund

visibility with past performance and estimate the regression equation:

α̂i,t:t+11 = θ0,t + θ1α̂i,t−12:t−1 + θ2α̂i,t−12:t−1LOi,t−1 + θ3α̂i,t−12:t−1HIi,t−1 +

+θ4LOi,t−1 + θ5HIi,t−1 +ΘX ′
i,t−1 + υi,t:t+11, (3)

where we also include the two dummy variables to allow for the possibility of different means for each

group of funds. We are mainly interested in the coefficients θ2 and θ3. Columns 2-5 of Table 3 show

the estimation results for each of the four proxies. The coefficients of the interaction of performance

with the LO dummy (θ2 ) are negative in all four cases and statistically significant at the 1% level

(family age), 5% level (number of investment categories and family advertising), and 10% level (family

size). Estimation results, therefore, suggest that differences in performance are shorter-lived for the least

visible funds than for the rest of funds. Moreover, in contrast to other funds, less visible funds exhibit

no performance persistence: The regression coefficient on past performance for these funds, θ1 + θ4,
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is not statistically significant for any of the proxies (unreported). However, we do not find differences

in performance persistence between highly visible funds and the rest of funds, which suggests that the

relation between visibility and persistence is non-monotonic.

An obvious concern about these results is the possibility that our proxies for visibility capture dif-

ferences in persistence across funds due to other fund characteristics. As mentioned in the introduction,

Elton et al. (2011) test the hypothesis that there should be less performance persistence among larger

funds, for which diseconomies of scale are more likely to be important, although they do not find support

for that hypothesis. Also, funds in different investment categories may exhibit different degrees of perfor-

mance persistence due to differences in the nature of the markets in which they operate. To control for

both possibilities, we include interactions of performance with fund size and with dummies for investment

categories. The estimation results are reported in Table 4. The coefficients on the interactions of size

with performance are negative, but not statistically significant except in column 3 (Family Size), where

it is only marginally significant. The fact that the interaction of performance with size is not significant

provides further support to the finding of Elton et al. (2011) that performance persistence does not

decline with fund size. Further, all signs for the interactions of past performance with the LO dummies

are negative and the coefficients are statistically significant at the 1% level in all cases except for the

family advertising proxy (5%).

In sum, the results of Table 3 and 4 are strongly indicative that there exist differences in performance

persistence associated with fund visibility and that these differences in persistence cannot be explained

by differences in fund size or differences in investment categories.

4.3 Performance persistence for winners and losers

Low persistence among certain types of funds may be the consequence of either recent underperformers

improving their performance or recent outperformers delivering lower performance, or both. To disen-

tangle the reason why less visible funds exhibit less persistent differences in performance, we estimate

the regression equation:

α̂i,t:t+11 = δ0,t +
∑
n

δ1,ndec ni,t−1

+
∑
n

δ2,ndec ni,t−1LOi,t−1 +
∑
n

δ3,ndec ni,t−1HIi,t−1

+δ4LOi,t−1 + δ5HIi,t−1 +∆X ′
i,t−1 + νi,t:t+11, (4)

where dec ni,t−1 is a dummy variable that equals one if fund i’s performance is in the n-th decile of all

funds’ alphas over the prior twelve months. We omit the dummy variables corresponding to the four
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central performance deciles, i.e., we only include in the regression the dummy variables corresponding to

the top three and bottom three performance deciles.

Once equation 4 has been estimated, we test whether the underperformance of funds in the LO

subsample is shorter-lived than that of otherwise similar recent underperformers. More specifically,

δ1,1 + δ2,1 captures the difference in expected performance between a LO-fund whose past performance

belongs to the first decile of the distribution and an otherwise identical LO-fund with past performance

in the central deciles. The coefficient δ1,1 captures the difference in expected performance between a fund

outside the LO and HI subsamples whose past performance belongs to the first decile of the distribution

and an otherwise identical fund with performance in the central deciles. Therefore, a positive value of

δ2,1 implies that the performance of underperforming LO-funds converges faster to the median fund’s

performance than the performance of funds that do not belong to the LO or HI subsamples. Analogously,

a negative value of δ2,10 indicates that the performance of outperperforming LO-funds converges faster

to the median fund’s performance than the performance of funds that do not belong to the LO or HI

subsamples.

Similarly, δ3,1 (δ3,10) is positive (negative) if HI-funds in the bottom (top) performance decile con-

verges to that of the median fund faster than that of funds with LO = HI = 0.

Column 1 of Table 5 reports estimation results when no interactions with LO and HI are included

in the regression equation. The estimated coefficients on the three bottom (top) performance decile

dummies are negative (positive) and statistically significant at any significance level. Future performance

also appears to increase monotonically with past performance. Differences in performance across deciles

are economically significant: Recent top performers outperform otherwise identical funds in the bottom

decile by 180 basis points per year.

In columns 2-4 we report estimation results when interactions with LO and HI are included and

investor sophistication is determined according to the number of investment categories in which the family

offers funds, family size, and family age. The coefficient on the interaction between the bottom decile

dummy and LO, δ2,1, is positive and statistically significant, suggesting that hard-to-find underperforming

funds exhibit better relative performance than otherwise similar underperforming funds, although the

coefficient is only marginally significant for family age. In contrast, none of the coefficients on the

interaction of the bottom decile dummy and HI is statistically significant.

However, when we use family advertising to define fund visibility, we find no difference in performance

persistence for underperforming funds in the low-visibility subsamples and otherwise similar funds. More-

over, we find that the performance of funds in families with the highest advertising expenditures reverts

faster to the median fund’s performance following poor recent performance. However, because of the small

sample size on fund families’ advertising expenditures, this result should be interpreted with caution.
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We then ask whether good performance reverts faster for low-visibility funds. The answer is yes:

The coefficients on the interaction terms between LO and the top decile dummy, δ2,10, are negative and

significant for all four proxies of investor sophistication. None of the interaction terms with the top decile

dummy is significant for high-visibility funds.

Therefore, the results of Table 5 suggest that the lower performance persistence documented in Tables

3 and 4 for low-visibility funds is due to these funds’ performance improving faster after poor performance

and, even more clearly so, to these funds’ performance deteriorating faster after good performance. Good

relative performance for less visible funds also lives shorter than for other funds.

4.4 Ranking on returns

So far, we have used Carhart’s four-factor model to measure fund performance both in the ranking

period and in the evaluation period. There is no consensus in the literature on mutual fund performance

persistence as to whether the researcher should employ the same model to rank funds and measure

subsequent performance. On the one hand, failing to control for a specific positively-priced risk factor in

the ranking period contaminates the ranking: Top decile portfolios will contain both funds with true high

alpha and funds with a high beta with respect to the omitted risk factor. On the other hand, using the

same asset pricing model to sort and estimate performance will also pick up the model bias, as pointed

out by Carhart (1997). While the former approach may bias results against finding persistence, the latter

may bias results in favor of finding persistence.

To examine whether our conclusions are robust to ranking funds on past returns, we repeat the tests

of Table 5 using fund returns measured over the last 12 months to define decile dummies. Table 6 reports

the results. The estimated coefficients on the decile dummies when no interactions are included (column

1) are similar to those of Table 5 for the bottom decile dummies. However, the coefficients on the top

decile dummies are much lower in absolute value than those obtained when past performance is measured

using the four-factor model. In fact, there is no evidence of persistence in outperformance when funds

are ranked on past returns. Therefore, funds in the top deciles of past performance are not separated

from mid-ranked funds in terms of their subsequent performance.

Consistently with the results of Table 5, the underperformance of bottom-ranked funds in the low-

visibility subsample tends to vanish in the subsequent year if the low-visibility subsample is defined

according to the number of investment categories, family size, and family age, but not advertising ex-

penditures. However, the coefficients on the interaction of LO with the top decile dummies are not

statistically significant. Also, with one exception, none of the coefficients on the interaction of HI with

the top decile dummies is statistically significant.

The results of Table 6 suggest that lack of persistence in the underperformance of the least visible
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funds appears to be robust to model bias. We do not find, however, that more visible funds exhibit

less persistence following good performance, simply because there is no evidence of persistence in good

performance when funds are ranked according to past fund returns.

4.5 Institutional investors

The prediction that differences in persistence should be associated with differences in investor sophisti-

cation could be tested in a more direct way if we could measure the degree of sophistication of a fund’s

target investors. In Institutional funds are a natural candidate for funds targeted to sophisticated in-

vestors. While all investors can invest in funds targeted to retail investors, only qualified investors can

invest in institutional funds. Del Guercio and Tkac (2002) document that pension fund sponsors are

more likely to use risk-adjusted measures of performance than mutual fund investors when evaluation

professional portfolio managers. They also find that pension managers, unlike mutual fund managers,

are penalized for poor performance. Both findings are consistent with the idea that pension plan spon-

sors are more sophisticated than mutual fund investors, most of which are retail investors. Glode et al.

(2011) find substantial performance persistence following good markets, but only in the retail segment

of the mutual fund market. Huang et al. (2011) show that the sensitivity of fund flows to performance

decreases with fund volatility more for institutional funds than for retail funds, which denotes higher

sophistication on the part of institutional fund investors in a framework of Bayesian learning from past

returns. On the other hand, James and Karceski (2006) find that, despite charging significantly lower

management expenses, institutional funds do not outperform retail mutual funds. However, institutional

funds with large minimum initial investment requirements outperform both the retail mutual funds and

other institutional funds. They attribute differences within the institutional segment to differences in

sophistication or agency costs.

To investigate whether differences in performance persistence between low visibility funds and the rest

of funds documented in the previous section simply capture differences between retail and institutional

investors, we estimate the regression below separately for each type of fund:

α̂i,t:t+11 = φ0,t +
∑
n

φ1,ndec ni,t−1 +ΦX ′
i,t−1 + ωi,t:t+11.

Institutional funds are defined as those containing institutional share classes only. We use the CRSP

identifiers for institutional shares, when available, and the fund’s or class’ name otherwise. Estimation

results are reported in Table 7. Results for retail funds (Column 1) are both quantitatively and qualita-

tively very similar to those in the first column of Table 5. In contrast, coefficients on past performance

decile dummies are not statistically significant for institutional funds (Column 2) with the exception of
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the top performance decile dummy. Therefore, we find less evidence of performance persistence among

institutional funds in our data, especially for poor performing funds. This evidence is consistent with that

of Busse et al. (2010) who find no evidence performance persistence in institutional investment products

using four-factor alphas. It is also consistent with our model’s predictions.

However, these results should be taken with caution for two reasons. First, our sample of institutional

funds is smaller than the sample of retail funds, which can explain the larger standard errors of Column

2. Second, given data availability, we cannot discard that our sample of institutional funds includes

retirement funds offered to retail investors.

5 Conclusions

Why do differences in performance across mutual funds persist through time? To answer this question,

we extend the model of Berk and Green (2004) and show that the interaction of investor heterogeneity

in reservation returns and a limit on the amount of capital investors can invest in mutual funds can

rationalize the empirical evidence on performance persistence.

To test the model’s empirical validity, we exploit a prediction of the model that has not been tested

before in the literature: Hard-to-find funds should exhibit less dispersion in expected performance and,

therefore, less persistence in observed performance differences. Consistently with this prediction, our test

results suggest that less visible funds and funds in families that advertise less, exhibit a substantially

lower degree of persistence in performance.

The results of the paper highlight the prevalence of frictions in retail financial markets. Previous

studies have noted that price competition alone may not be sufficient to eliminate differences in net per-

formance across funds when investors fail to react to differences in expected performance and management

companies react strategically (Christoffersen and Musto, 2002; Gil-Bazo and Ruiz-Verdú, 2008; Gil-Bazo

and Ruiz-Verdú, 2009). In this paper, we argue that even if investors react rationally to differences in

expected performance, market frictions distort their choices with respect to what would be expected in a

friction-less market, such as the one described by Berk and Green (2004), and can generate predictability

in fund performance.

An important implication of our results is that policies aimed at improving the efficiency of the market

for mutual funds should focus on eliminating frictions and, particularly, facilitating product comparisons

both within and across asset classes. The fact that funds that are easy to find exhibit a larger degree

of persistence in underperformance than the hard-to-find funds suggests that a simple increase in the

amount of information available to investors through mandatory disclosures may not be an effective

means of improving the efficiency of this market.
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6 Appendix

Proof of Proposition 1. The current investors exit or reinvest their wealth depending on whether

their reservation return is lower or higher than −γC , where γC is such that TPt+1

(
q∗t+1

)
= −γC . The

quantity invested in the fund is

q∗t+1 = m
(
γMAX − γC

)
+m

(
(γMAX − γC)− 1

2
(γ2

MAX − (γC)2)

)
,

where the first term corresponds to the period t − 1 investment that is reinvested and the second term

corresponds to the period t investment. The equilibrium condition TPt+1

(
q∗t+1

)
= −γC can be rewritten

as

φ− cm

(
2(γMAX − γC)− 1

2
(γ2

MAX − (γC)2)

)
− f = −γC . (5)

Solving for γC , we obtain

γC =
1

cm

(
1 + 2cm−A1/2

)
, where

A ≡ 1 + 2cm (2 + φ− f) + c2m2 (2− γMAX)
2
.

γC is a real solution of equation (5) if A > 0 and a sufficient condition for A > 0 is 2 + φ > f, which is a

reasonable assumption.

Notice that if γC < γ all current investors re-entry and we have also possible entry of new investors.

The new investors have to pay the cost K to enter the fund and therefore, their cutoff reservation return,

−γN , is obtained from:

TPt+1

(
q∗∗t+1

)−K = −γN ,

where q∗∗t+1 = vt +m

(
(γMAX − γN )− 1

2
(γ2

MAX − (γN )2)

)
.

We solve for γN from the equilibrium condition

φ− cm

(
2γMAX − γN − γ − 1

2

(
γ2
MAX − (γN )2

))− f −K = −γN , (6)
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and obtain

γN =
1

cm

(
1 + cm−B1/2

)
, where

B ≡ 1 + 2cm (1 + φ− f −K) + c2m2
(
1 + 2γ + γ2

MAX − 4γMAX

)

= 1 + 2cm (1 + φ− f −K) + c2m2

(
(1− γMAX)

2 − 2

m
vt

)
.

γN is a real solution of equation (6) if B ≥ 0. For B to be higher or equal than 0 we need to have

K < K (γMAX) ≡ 1

2cm

(
1 + 2cm (1 + φ− f) + c2m2

(
(1− γMAX)

2 − 2

m
vt

))
. So if K < K (γMAX)

there is a solution to equation (6) , otherwise there is no real solution (and therefore no new investors

enter the fund). When there is a real solution, we distinguish two cases depending on whether the

solution γN is higher or smaller than γ. When γN ≥ γ, no new investors want to enter the fund because

the performance of the fund is lower than the sum of their reservation return and the entry cost. The

expected return in this case equals TPt+1

(
qt+1

)
> −γ. On the other hand, when 0 ≤ γN < γ, new

investors enter the fund. Since the last new investor that entered has reservation return −γN , the

expected return in this case is K − γN .

Notice also that both γC and γN increase with γMAX if γMAX < 2.

Consequently, the amount invested in the fund at time t+ 1 is

qt+1 =





0, if φt+1 < Φ1

m
(
2
(
γMAX − γC

)− 1
2 (γ

2
MAX − (γC)2)

)
, if Φ1 ≤ φt+1 < Φ2

2vt − m

2
(γ2

MAX − γ2), if Φ2 ≤ φt+1 < Φ2 +K

vt +m
((
γMAX − γN

)− 1
2 (γ

2
MAX − (γN )2)

)
, if Φ2 +K ≤ φt+1 < Φ3 +K

vt +M, if Φ3 +K ≤ φt+1,

where Φ1 ≡ f−γMAX , Φ2 ≡ f+2cvt−γ− 1
2cm

(
γ2
MAX − γ2

)
and Φ3 ≡ f+cvt+cmγMAX

(
1− γMAX

2

)
.

Notice that if φt+1 < Φ1, the fund closes down. As a result the expected return equals to

E (rt+1 (φt+1)) =





−γC if Φ1 ≤ φt+1 < Φ2

TPt+1

(
qt+1

)
if Φ2 ≤ φt+1 < Φ2 +K

K − γN if Φ2 +K ≤ φt+1 < Φ3 +K

TPt+1 (vt +M) if Φ3 +K ≤ φt+1.

Proof of Proposition 2. Notice that, since γHigh
MAX − γLow

MAX > 0, we have that ΦLow
1 > ΦHigh

1 ,

ΦLow
2 > ΦHigh

2 but ΦLow
3 < ΦHigh

3 .

27



We search for φ1 ∈
(
ΦHigh

2 ,ΦHigh
2 +K

)
such that

ELow (rt+1) = EHigh (rt+1)

i.e.− γC = φ1 − cq∗t+1 − f.

Notice that φ1 − cq∗t+1 − f = φ1 − ΦHigh
2 + ΦHigh

2 − cvt − f = φ1 − ΦHigh
2 − γHigh, and −γC =

− (
1 + 2a−A1/2

)
. We define a by a ≡ cm.

Solving for A we obtain A =
(
2a+ a

(
φ1 − ΦHigh

2 − γHigh
)
+ 1

)2

, if 2a+a
(
φ1 − ΦHigh

2 − γHigh
)
+

1 > 0 i.e. φ1 > ΦHigh
2 + γHigh − 2 + 1

a and this is satisfied for φ1 > ΦHigh
2 . Since on the other hand

A = 1 + 2a (2 + φ1 − f) + a2
(
2− γLow

MAX

)2
we have that

(
2a+ a

(
φ1 − ΦHigh

2 − γHigh
)
+ 1

)2

= 1 + 2a (2 + φ1 − f) + a2
(
2− γLow

MAX

)2
(
2a+ a

(
φ1 − ΦHigh

2 −K − γHigh +K
)
+ 1

)2

= 1 + 2a
(
2 + φ1 −

(
ΦHigh

2 +K
)
+ΦHigh

2 +K − f
)

+a2
(
2− γLow

MAX

)2
(
2a+ a

(−x− γHigh +K
)
+ 1

)2
= 1 + 2a

(
2− x+ΦHigh

2 +K − f
)
+ a2

(
2− γLow

MAX

)2
,

where by definition x ≡ ΦHigh
2 +K − φ1.

We define

T ≡ a2
(
2− γLow

MAX

)2
and

and V ≡ a
(
4cvt − γHigh − cvt

(
γHigh
MAX + γHigh

))

= avt

(
4c+

1

m
+

cvt
m

)
− γHigh

MAX (1 + 2cvt) .

We obtain two solutions x∗
1,2 =

(
2− γHigh +K ± 1

a

√
T + V

)
. If γHigh

MAX < 2 and K > K1 ≡
1
a

(√
T + V − a

(
2− γHigh

))
, the solution x∗

1 =
(
2− γHigh +K − 1

a

√
T + V

) ∈ (0,K) . Consequently,

φ1 = ΦHigh
2 +K − x∗

1 ∈
(
ΦHigh

2 ,ΦHigh
2 +K

)
.

Notice that x∗
2 =

(
2− γHigh +K + 1

a

√
T + V

)
is always a positive solution but is also higher than

K, so it cannot be solution of our problem.

We have shown in Proposition 1 that if K ≥ K
(
γHigh
MAX

)
≡ K2 then no new investors will enter the

fund that targets the unsophisticated investors. The expected return of this fund increases one to one

with φt+1, and since ΦLow
2 > ΦHigh

2 it implies that EHigh
(
rt+1

(
ΦLow

2 +K
))

> ELow
(
rt+1

(
ΦLow

2 +K
))

for any φt+1 > φ1.

Let us then consider the case whenK < K
(
γHigh
MAX

)
. To prove next that there is φ2 ∈ (

ΦLow
2 ,ΦLow

2 +K
)
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such that ELow (rt+1) = EHigh (rt+1) is enough to prove that the following two conditions are true:

EHigh
(
rt+1

(
ΦHigh

2 +K
))

> ELow
(
rt+1

(
ΦHigh

2 +K
))

and EHigh
(
rt+1

(
ΦLow

2 +K
))

< ELow
(
rt+1

(
ΦLow

2 +K
))

.

We have shown that when K > K1 it exists φ1 ∈
(
ΦHigh

2 ,ΦHigh
2 +K

)
such that ELow (rt+1) =

EHigh (rt+1) and this implies that ELow
(
rt+1

(
ΦHigh

2 +K
))

could be either −γC or ΦHigh
2 +K−cqt+1−

f. In the first case, it is straightforward that since the return does not change the slope in that interval,

EHigh
(
rt+1

(
ΦHigh

2 +K
))

> ELow
(
rt+1

(
ΦHigh

2 +K
))

. In the second case, if ELow
(
rt+1

(
ΦHigh

2 +K
))

=

ΦHigh
2 +K − cqt+1 − f we have then that

EHigh
(
rt+1

(
ΦHigh

2 +K
))

= ΦHigh
2 +K − cqt+1

(
γHigh
MAX

)
− f >

ELow
(
rt+1

(
ΦHigh

2 +K
))

= ΦHigh
2 +K − cqt+1

(
γLow
MAX

)− f ⇔

qt+1

(
γHigh
MAX

)
< qt+1

(
γLow
MAX

)
.

Notice that qt+1 (γMAX) = 2vt − m

2
(γ2

MAX − γ2) = 2vt − vt
2
(γMAX + γ) = vt

(
2− 1

2
(2γMAX − vt

m )

)
.

Since qt+1 (γMAX) decreases with γMAX it results that qt+1

(
γHigh
MAX

)
< qt+1

(
γLow
MAX

)
.

To prove that EHigh
(
rt+1

(
ΦLow

2 +K
))

< ELow
(
rt+1

(
ΦLow

2 +K
))

we calculate both the expected

adjusted returns evaluated in ΦLow
2 + K. Notice that in this range both returns equal to K − γN and

γN increase with γMAX if γMAX < 1. Since γLow
MAX < γHigh

MAX it implies K − γLow,N > K − γHigh,N

and therefore EHigh
(
rt+1

(
ΦLow

2 +K
))

< ELow
(
rt+1

(
ΦLow

2 +K
))
. If K > K (γMAX) , the return for

the sophisticated equals ELow
(
rt+1

(
ΦLow

2 +K
))

= ΦLow
2 +K − cqt+1

(
γHigh
MAX

)
− f > K − γLow,N and

EHigh
(
rt+1

(
ΦLow

2 +K
))

= K−γHigh,N , so again EHigh
(
rt+1

(
ΦLow

2 +K
))

< ELow
(
rt+1

(
ΦLow

2 +K
))

q.e.d.

References

Berk, J. and R. Green (2004). Mutual fund flows and performance in rational markets. Journal of

Political Economy 112 (6), 1269–1295.

Berk, J. and I. Tonks (2007). Return persistence and fund flows in the worst performing mutual funds.

Working paper .

Bessler, W., D. Blake, P. Luckoff, and I. Tonks (2010). Why does mutual fund performance not persist?

the impact and interaction of fund flows and manager changes. Working paper .

Bollen, N. and J. Busse (2005). Short-term persistence in mutual fund performance. Review of Financial

Studies 18 (2), 569–597.

Busse, J., A. Goyal, and S. Wahal (2010). Performance and persistence in institutional investment

29



management. The Journal of Finance 65 (2), 765–790.

Carhart, M. (1997). On persistence in mutual fund performance. Journal of Finance 52 (1), 57–82.

Chen, J., H. Hong, M. Huang, and J. Kubik (2004). Does fund size erode mutual fund performance?

The role of liquidity and organization. The American Economic Review 94 (5), 1276–1302.

Christoffersen, S. and D. Musto (2002). Demand curves and the pricing of money management. Review

of Financial Studies 15 (5), 1499–1524.

Christoffersen, S. E. (2001). Why do money fund managers voluntarily waive their fees? The Journal

of Finance 56 (3), 1117–1140.

Del Guercio, D. and P. Tkac (2002). The determinants of the flow of funds of managed portfolios:

Mutual funds vs. pension funds. Journal of Financial and Quantitative Analysis 37 (4), 523–558.

Elton, E., M. Gruber, and C. Blake (2011). Does Size Matter? The Relationship Between Size and

Performance. Working paper .

Evans, R. (2010). Mutual fund incubation. The Journal of Finance 65 (4), 1581–1611.

Ferreira, M., A. Keswani, A. Miguel, and S. Ramos (2010). What Explains Mutual Fund Performance

Persistence? International Evidence. Working paper .

Gallaher, S., R. Kaniel, and L. Starks (2006). Madison Avenue meets Wall Street: Mutual fund families,

competition and advertising. Working paper .
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Table 1
Summary statistics.
The table shows summary statistics for the sample of US Domestic Equity mutual funds in the
1993-2010 period employed in the paper. N denotes de number of fund-month observations,
except in the case of variables measured at the family level, where we only consider a single
observation per family and month. Q1 and Q3 denote the 25th and 75th percentiles, respectively.
Total net assets are in millions of USD. Age is the number of years since inception of the fund’s
oldest class. Family age is the age of the family’s oldest fund. Loads, fees, turnover ratio, and
returns are asset-weighted averages across all classes in the fund.

Panel A: 1993-2000
Variable N Mean Std. dev. Q1 Median Q3

Total net assets 84287 1333.59 4040.44 93.31 278.9 921.88
Annual flow (in %) 63369 12.24 63.35 -11.43 -0.02 18.18
Age 84144 15.13 14.82 5.42 9.08 17.5
Family total net assets 26998 10981.68 40743.85 228.6 1428.47 5611.1
Family age 26987 25.86 20.68 9.67 16.25 40.5
Front-end load (in %) 37433 3.36 1.96 1.73 3.76 4.75
Back-end load (in %) 28188 1.43 1.37 0.32 1 2.17
Management fee (in %) 37991 0.74 0.24 0.6 0.75 0.9
Expense ratio (in %) 71040 1.21 0.39 0.94 1.16 1.44
12b-1 fee (in %) 22914 0.33 0.25 0.12 0.25 0.5
Turnover ratio (in %) 70452 82.28 64.63 36.2 67 109
Return (in %) 83929 15.17 66.71 -22.03 17.44 51.83
Carhart’s 4-factor alpha (in %) 51181 -0.41 26.99 -13.38 -0.73 11.96

Panel A: 2001-2010
Variable N Mean Std. dev. Q1 Median Q3

Total net assets 186114 1256.74 4946.26 80 242.7 838.8
Annual flow (in %) 145663 6.31 58.90 -15.26 -4.73 11.26
Age 185881 14.10 12.87 6.5 10.17 16.08
Family total net assets 43703 20925.18 91580.15 201.1 1265.4 7738.7
Family age 43703 28.74 21.84 12.58 20.67 38.58
Front-end load (in %) 97186 2.62 1.73 1.09 2.65 4.00
Back-end load (in %) 75535 0.76 0.89 0.10 0.43 1.09
Management fee (in %) 171168 0.72 0.25 0.59 0.75 0.89
Expense ratio (in %) 170249 1.23 0.38 0.99 1.21 1.47
12b-1 fee (in %) 127940 0.29 0.23 0.09 0.25 0.44
Turnover ratio (in %) 173993 82.15 64.48 35 66 110
Return (in %) 185859 4.56 65.30 -29.18 11.98 45.30
Carhart’s 4-factor alpha (in %) 130793 -2.17 21.14 -12.01 -1.99 7.86



Table 2
Differences across visibility subsamples
The table compares selected fund characteristics across fund subsamples defined according to fund
visibility. Risk-adjusted performance is estimated using Carhart’s (1997) four-factor model. α denotes
performance in the subsequent 12 months. Assets denotes the fund’s assets under management. F-load
and B-load denote the fund’s asset-weighted front-end load and back-end load, respectively. 12b-1 fee
and Man. fee denote the fund’s 12b-1 and management fee, respectively. High denotes the subsample of
funds that belong to the top quartile of the monthly distribution of: the number of investment categories
in the family; family size; family age; or family advertising. Low is defined analogously for the bottom
quartile, except for family advertising, in which case Low denotes subsample of funds with no reported
advertising expenditures. The number of fund-year observations is reported in parentheses.

Assets F-load 12b-1 fee Man. fee α B-load

# Inv Cat Low 525.79 0.74% 0.12% 0.84% -1.51% 0.12%

(4360) (4360) (3675) (3318) (2316) (4360)

High 2449.55 1.63% 0.22% 0.64% -1.66% 0.50%

(4238) (4238) (3806) (3494) (2621) (4238)

Low-High -1923.77 -0.89% -0.10% 0.20% 0.15% -0,38%

S.e 88.97 0.04% 0.01% 0.01% 0.20% 0.02%

Family Size Low 186.12 0.85% 0.14% 0.83% -1.55% 0.16%

(5580) (5580) (4709) (4276) (2915) (5580)

High 3387.16 1.71% 0.22% 0.63% -1.73% 0.49%

(5493) (5493) (4632) (4422) (3622) (5493)

Low-High -3201.04 -0.85% -0.08% 0.20% 0.18% -0.33%

S.e. 118.97 0.04% 0.00% 0.01% 0.18% 0.02%

Family Age Low 385.02 0.69% 0.11% 0.81% -1.63% 0.11%

(5648) (5648) (4761) (4455) (2622) (5648)

High 2971.8 2.12% 0.27% 0.63% -1.8% 0.52%

(5619) (5619) (4739) (4488) (3692) (5619)

Low-High -2586.78 -1.43% -0.15% 0.18% 0.16% -0.41%

S.e. 117.58 0.03% 0.00% 0.01% 0.18% 0.01%

Family Adv. Low 1210.00 1.38% 0.21% 0.74% -1.91% 0.37%

(15888) (15888) (14414) (13380) (9721) (15888)

High 2969.95 1.36% 0.19% 0.64% -1.07% 0.13%

(822) (822) (776) (731) (610) (822)

Low-High -1759.95 0.02% 0.02% 0.10% -0.84% 0.24%

S.e. 175.65 0.07% 0.01% 0.01% 0.30% 0.03%



Table 3
Performance persistence and fund visibility.
The table reports the estimated coefficients of monthly regressions of fund annual performance on past
annual performance and selected fund characteristics in the 1996-2010 period. Risk-adjusted performance
is estimated using Carhart’s (1997) four-factor model. α denotes performance over the prior 12 months.
size denotes the natural logarithm of the fund’s assets under management, lagged one year. flow is the
net growth in fund’s assets during the last 12 months. age is the natural logarithm of the number of
months since the inception date of the fund’s oldest class, fam size and fam age, denote the size the
fund’s family and the age of the oldest class in the fund’s family. F-load and B-load denote the fund’s
asset-weighted front-end load and back-end load, lagged one year, respectively. turnover denotes the
fund’s asset-weighted turnover. Regressors include month dummies. HI is a dummy variable that equals
one if the fund belongs to the top quartile of the monthly distribution of: the number of investment
categories in the family (column 2); family size (column 3); family age (column 4); or family advertising
(column 5). LO is defined analogously for the bottom quartile, except in column 4 where it equals one if
the fund’s family has no reported advertising expenditures. Standard errors are clustered by both fund
and month. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

(1) (2) (3) (4) (5)
#Inv Cat Family Size Family Age Family Adv.

α 0.071*** 0.085*** 0.088*** 0.090*** 0.113***
(0.019) (0.022) (0.023) (0.022) (0.029)

size -0.003*** -0.003*** -0.003*** -0.002*** -0.002***
(0.001) (0.001) (0.001) (0.001) (0.001)

flow -0.005** -0.005** -0.005** -0.004** -0.004**
(0.002) (0.002) (0.002) (0.002) (0.002)

age 0.000 0.000 0.000 0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

fam size 0.001** 0.001** 0.003*** 0.001** 0.001
(0.000) (0.001) (0.001) (0.000) (0.001)

fam age -0.000 -0.000 -0.000 -0.001 -0.001
(0.001) (0.001) (0.001) (0.002) (0.001)

F-load 0.021 0.026 0.021 0.024 0.032
(0.034) (0.034) (0.034) (0.034) (0.038)

B-load -0.329*** -0.317*** -0.335*** -0.328*** -0.315***
(0.106) (0.105) (0.106) (0.105) (0.122)

exp -0.619** -0.615** -0.554** -0.637** -0.551*
(0.275) (0.275) (0.277) (0.275) (0.295)

turnover -0.003* -0.003* -0.003* -0.003* -0.003
(0.002) (0.002) (0.002) (0.002) (0.002)

α x LO -0.076** -0.059* -0.078*** -0.052**
(0.031) (0.031) (0.030) (0.026)

α x HI -0.015 -0.018 -0.021 -0.048
(0.025) (0.025) (0.022) (0.049)

LO 0.003 0.006** -0.003 -0.005***
(0.002) (0.003) (0.003) (0.002)

HI 0.001 -0.004* -0.001 -0.001
(0.002) (0.002) (0.002) (0.003)

Time Fixed Effects Yes Yes Yes Yes Yes

Observations 108,524 108,524 108,524 108,524 101,098
Adjusted R-squared 0.074 0.075 0.075 0.074 0.076



Table 4
Performance persistence: the role of fund size and investment categories.
The table reports the estimated coefficients of monthly regressions of fund annual performance on past
annual performance and selected fund characteristics in the 1996-2010 period. Risk-adjusted performance
is estimated using Carhart’s (1997) four-factor model. α denotes performance over the prior 12 months.
Controls include: size, flow, age, family size, family age, front-end and back-end loads, and portfolio
turnover, as defined in Table 3. Regressors include dummy variables for months, investment categories,
and interactions of investment categories with performance. HI is a dummy variable that equals one if
the fund belongs to the top quartile of the monthly distribution of: the number of investment categories
in the family (column 2); family size (column 3); family age (column 4); or family advertising (column
5). LO is defined analogously for the bottom quartile, except in column 4 where it equals one if the
fund’s family has no reported advertising expenditures. Standard errors are clustered by both fund and
month. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

(1) (2) (3) (4) (5)
#Inv Cat Family Size Family Age Family Adv.

α 0.171*** 0.186*** 0.181*** 0.185*** 0.221***
(0.043) (0.044) (0.044) (0.045) (0.058)

size -0.003*** -0.003*** -0.003*** -0.003*** -0.002***
(0.001) (0.001) (0.001) (0.001) (0.001)

flow -0.005** -0.005** -0.005** -0.005** -0.004**
(0.002) (0.002) (0.002) (0.002) (0.002)

age 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

fam size 0.001*** 0.002*** 0.003*** 0.001*** 0.001*
(0.000) (0.001) (0.001) (0.000) (0.000)

fam age -0.000 -0.000 -0.000 -0.000 -0.001
(0.001) (0.001) (0.001) (0.002) (0.001)

F-load 0.025 0.029 0.026 0.027 0.036
(0.034) (0.034) (0.034) (0.034) (0.038)

B-load -0.339*** -0.328*** -0.349*** -0.340*** -0.324***
(0.103) (0.103) (0.104) (0.102) (0.117)

exp -0.622** -0.618** -0.552** -0.626** -0.567**
(0.260) (0.260) (0.263) (0.259) (0.277)

turnover -0.002 -0.002 -0.002 -0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.002)

α x LO -0.096*** -0.089*** -0.088*** -0.058**
(0.028) (0.031) (0.030) (0.025)

α x HI 0.005 0.019 -0.004 -0.028
(0.025) (0.027) (0.022) (0.047)

LO 0.002 0.005* -0.003 -0.006***
(0.002) (0.003) (0.003) (0.002)

HI 0.000 -0.003 -0.001 -0.001
(0.002) (0.002) (0.002) (0.003)

α x size -0.003 -0.008 -0.016* -0.007 -0.005
(0.007) (0.007) (0.009) (0.007) (0.007)

Time Fixed Effects Yes Yes Yes Yes Yes
Inv. Cat. Fixed Effects Yes Yes Yes Yes Yes
Inv. Cat. Interactions Yes Yes Yes Yes Yes

Observations 108,524 108,524 108,524 108,524 101,098
Adjusted R-squared 0.090 0.091 0.091 0.091 0.094



Table 5
Performance persistence among winners and losers.
The table reports the estimated coefficients of monthly regressions of fund annual performance on past annual
performance and selected fund characteristics in the 1996-2010 period. Risk-adjusted performance is estimated
using Carhart’s (1997) four-factor model. α denotes performance over the prior 12 months. dec n is a
dummy variable that equals one if the fund belongs to the n-th decile of the monthly distribution of past
performance. Coefficients for control variables are not reported. Controls include: size, flow, age, family size,
family age, front-end and back-end loads, and portfolio turnover, as defined in Table 3. Regressors include
month dummies. HI is a dummy variable that equals one if the fund belongs to the top quartile of the monthly
distribution of: the number of investment categories in the family (column 2); family size (column 3); family
age (column 4); or family advertising (column 5). LO is defined analogously for the bottom quartile, except in
column 4 where it equals one if the fund’s family has no reported advertising expenditures. Standard errors are
clustered by both fund and month. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

(1) (2) (3) (4) (5)
#Inv Cat Family Size Family Age Family Adv.

dec 1(α)(bottom) -0.008*** -0.012*** -0.010*** -0.009*** -0.009*
(0.002) (0.003) (0.003) (0.003) (0.005)

dec 2(α) -0.004*** -0.005*** -0.003* -0.005** -0.006*
(0.001) (0.002) (0.002) (0.002) (0.003)

dec 3(α) -0.003*** -0.003*** -0.003** -0.003*** -0.001
(0.001) (0.001) (0.001) (0.001) (0.002)

dec 8(α) 0.003*** 0.003** 0.003** 0.003** 0.001
(0.001) (0.001) (0.001) (0.001) (0.002)

dec 9(α) 0.006*** 0.006*** 0.008*** 0.007*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.003)

dec 10(α)(top) 0.010*** 0.014*** 0.015*** 0.014*** 0.020***
(0.003) (0.004) (0.004) (0.003) (0.006)

dec 1(α) x LO 0.012** 0.010** 0.009* 0.000
(0.005) (0.005) (0.005) (0.005)

dec 2(α) x LO 0.003 -0.000 0.002 0.003
(0.003) (0.003) (0.003) (0.003)

dec 3(α) x LO 0.006*** 0.003 0.007** -0.001
(0.002) (0.002) (0.003) (0.002)

dec 1(α) x HI 0.006 -0.003 -0.001 0.017**
(0.004) (0.004) (0.004) (0.008)

dec 2(α) x HI 0.002 -0.003 0.001 -0.002
(0.003) (0.003) (0.003) (0.007)

dec 3(α) x HI -0.001 -0.001 -0.001 -0.003
(0.002) (0.002) (0.002) (0.005)

dec 8(α) x LO -0.004* -0.004* -0.004 0.001
(0.002) (0.002) (0.002) (0.002)

dec 9(α) x LO -0.001 -0.004 -0.004 -0.003
(0.003) (0.003) (0.003) (0.003)

dec 10(α) x LO -0.016*** -0.014*** -0.011** -0.013**
(0.005) (0.005) (0.005) (0.005)

dec 8(α) x HI 0.003 0.001 0.002 0.011**
(0.002) (0.002) (0.002) (0.004)

dec 9(α) x HI 0.003 -0.004 -0.000 0.004
(0.003) (0.003) (0.003) (0.005)

dec 10(α) x HI -0.005 -0.008 -0.007 -0.001
(0.005) (0.006) (0.005) (0.010)

LO 0.004* 0.008*** -0.002 -0.003*
(0.002) (0.003) (0.002) (0.002)

HI -0.000 -0.002 -0.001 -0.002
(0.002) (0.002) (0.002) (0.003)

Time Fixed Effects Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes

Observations 108,524 108,524 108,524 108,524 101,098
R-squared 0.076 0.077 0.078 0.077 0.079



Table 6
Performance persistence for recent winners and losers. Fund returns.
The table reports the estimated coefficients of monthly regressions of fund annual performance on past annual
performance and selected fund characteristics in the 1996-2010 period. Risk-adjusted performance is estimated
using Carhart’s (1997) four-factor model. ret denotes fund returns in the last 12 months. dec n is a dummy
variable that equals one if the fund belongs to the n-th decile of the monthly distribution of past performance.
Coefficients for control variables are not reported. Controls include: size, flow, age, family size, family
age, front-end and back-end loads, and portfolio turnover, as defined in Table 3. Regressors include month
dummies. HI is a dummy variable that equals one if the fund belongs to the top quartile of the monthly
distribution of: the number of investment categories in the family (column 2); family size (column 3); family
age (column 4); or family advertising (column 5). LO is defined analogously for the bottom quartile, except in
column 4 where it equals one if the fund’s family has no reported advertising expenditures. Standard errors are
clustered by both fund and month. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

(1) (2) (3) (4) (5)
#Inv Cat Family Size Family Age Family Adv.

dec 1(ret) -0.009*** -0.013*** -0.012*** -0.012*** -0.009
(0.003) (0.003) (0.003) (0.003) (0.005)

dec 2(ret) -0.004*** -0.006*** -0.007*** -0.004** -0.004
(0.002) (0.002) (0.002) (0.002) (0.004)

dec 3(ret) -0.003** -0.004** -0.003** -0.003* 0.000
(0.001) (0.002) (0.002) (0.002) (0.003)

dec 8(ret) 0.000 -0.000 -0.001 0.001 0.002
(0.001) (0.002) (0.002) (0.002) (0.003)

dec 9(ret) 0.002 0.001 0.002 0.003 0.007*
(0.002) (0.002) (0.002) (0.002) (0.004)

dec 10(ret) 0.003 0.003 0.003 0.005 0.006
(0.003) (0.004) (0.004) (0.004) (0.006)

dec 1(ret) x LO 0.012*** 0.010** 0.012*** -0.001
(0.004) (0.004) (0.005) (0.005)

dec 2(ret) x LO 0.009*** 0.008** 0.005* -0.000
(0.003) (0.003) (0.003) (0.004)

dec 3(ret) x LO 0.005 0.003 0.005* -0.003
(0.003) (0.003) (0.003) (0.003)

dec 1(ret) x HI 0.011** 0.001 0.003 -0.002
(0.004) (0.005) (0.005) (0.010)

dec 2(ret) x HI 0.003 0.003 -0.004 -0.001
(0.003) (0.003) (0.003) (0.006)

dec 3(ret) x HI 0.002 0.001 -0.003 -0.001
(0.002) (0.002) (0.002) (0.005)

dec 8(ret) x LO 0.000 0.002 -0.001 -0.002
(0.003) (0.002) (0.003) (0.003)

dec 9(ret) x LO 0.000 0.002 -0.003 -0.006
(0.003) (0.004) (0.003) (0.004)

dec 10(ret) x LO -0.002 0.001 -0.002 -0.004
(0.005) (0.005) (0.005) (0.005)

dec 8(ret) x HI 0.002 0.002 -0.003 -0.003
(0.002) (0.002) (0.002) (0.005)

dec 9(ret) x HI 0.002 -0.004 -0.003 -0.004
(0.003) (0.003) (0.003) (0.005)

dec 10(ret) x HI 0.002 -0.003 -0.004 -0.000
(0.006) (0.005) (0.004) (0.010)

LO 0.001 0.004 -0.003 -0.003
(0.002) (0.003) (0.003) (0.002)

HI -0.001 -0.004* 0.000 0.001
(0.002) (0.002) (0.002) (0.003)

Time Fixed Effects Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes

Observations 108,524 108,524 108,524 108,524 101,098
Adjusted R-squared 0.073 0.074 0.074 0.074 0.075



Table 7
Performance persistence for recent winners and losers. Retail versus institutional funds.
The table reports the estimated coefficients of monthly regressions of fund annual performance on past annual
performance and selected fund characteristics in the 1996-2010 period. Risk-adjusted performance is estimated
using Carhart’s (1997) four-factor model. ret denotes fund returns in the last 12 months. dec n is a dummy
variable that equals one if the fund belongs to the n-th decile of the monthly distribution of past performance.
Coefficients for control variables are not reported. Controls include: size, flow, age, family size, family age,
front-end and back-end loads, and portfolio turnover, as defined in Table 3. Regressors include month dummies.
Column (1) shows results for funds with only retail classes. Column (2) shows results for funds with only
institutional classes. Standard errors are clustered by both fund and month. ***, **, and * indicate significance
at the 1%, 5%, and 10% levels, respectively

(1) (2)
Retail Funds Institutional Funds

dec 1(α)(bottom) -0.011*** -0.009
(0.003) (0.007)

dec 2(α) -0.006*** -0.006
(0.002) (0.004)

dec 3(α) -0.003** 0.002
(0.001) (0.003)

dec 8(α) 0.003** -0.003
(0.002) (0.003)

dec 9(α) 0.006*** 0.006
(0.002) (0.004)

dec 10(α)(top) 0.010*** 0.022*
(0.004) (0.012)

size -0.003*** -0.002
(0.001) (0.002)

flow -0.007** -0.013**
(0.003) (0.005)

age -0.005*** 0.003
(0.002) (0.004)

fam size 0.001 0.002
(0.001) (0.002)

fam age 0.003 -0.001
(0.002) (0.004)

F-load 0.000 -0.030
(0.043) (0.142)

B-load -0.266* -0.652
(0.146) (1.964)

exp -0.844** -0.382
(0.393) (0.869)

turnover -0.005** 0.001
(0.002) (0.005)

Time Fixed Effects Yes Yes

Observations 55,214 8,554
Adjusted R-squared 0.068 0.107


